Physical properties and biocompatibility of UHMWPE-derived materials modified by synchrotron radiation

نویسندگان

  • Iu. Bykova
  • V. Weinhardt
  • A. Kashkarova
  • S. Lebedev
  • T. Baumbach
  • V. Pichugin
  • K. Zaitsev
  • I. Khlusov
چکیده

The applications of synchrotron radiation (SR) in medical imaging have become of great use, particularly in angiography, bronchography, mammography, computed tomography, and X-ray microscopy. Thanks to recently developed phase contrast imaging techniques non-destructive preclinical testing of low absorbing materials such as polymers has become possible. The focus of the present work is characterization and examination of UHMWPE-derived materials widely used in medicine, before and after their exposure to SR during such testing. Physical properties, such as wettability, surface energy, IR-spectroscopy, roughness, optical microscopy, microhardness measurements of UHMWPE samples were studied before and after SR. The relationship between a growth of UHMWPE surface hydrophilicity after SR and surface colonization by stromal cells was studied in vitro. Obtained results demonstrate that SR may be used as prospective direction to examine bulk (porous) structure of polymer materials and/or to modify polymer surface and volume for tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-Situ Polymerization of UHMWPE Using Bi-Supported Ziegler-Natta Catalyst of MoS2 Oxide/MgCl2 (Ethoxide Type)/TiCl4/TiBA: Study of Thermo-Mechanical Properties of System

The use of UHMWPE has attracted the attention of many researchers and industries. The aim of the present work is to fabricate UHMWPE/MoS2-Oxide nano-composites using in-situ polymerization. For this purpose, modified molybdenum disulfide was used. In order to perform the polymerization, a Ziegler-Natta catalytic system, with MoS2-Oxide and magnesium Ethoxide as support, was used. In order to fa...

متن کامل

Surface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility

      Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...

متن کامل

Biomechanical Properties of Dispersep Article Reinforced Polymer Composites on Ultrahigh Molecular Weight Polyethylene (UHMWPE)

Ultrahigh molecular weight polyethylene (UHMWPE) having a low coefficient of friction (CoF), high wearand chemical resistance in harsh environments, is used for fabricating medical products (hip and knee joints, intervertebral discs, plates for maxillofacial surgery, and others). Priority of polymers, in particular UHMWPE to be applied as medical implant materials, is due to their proximity to ...

متن کامل

Synchrotron Radiation Spectroscopy on Strongly Correlated Electron Systems

Solids with strong electron–electron interaction, namely strongly correlated electron systems (SCES), have various physical properties, such as non-BCS superconducting, colossal magneto-resistance, heavy fermion and so on, which cannot be predicted by first-principle band structure calculation. Due to the physical properties, the materials are the candidates of the next generation functional ma...

متن کامل

Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites: Ball-Milling Preparation Mechanical Performance and Biocompatibility Effects

Graphene oxide (GO)/ultrahigh-molecular-weight polyethylene (UHMWPE) composites were successfully fabricated through the mechanical ball milling technology and processed according to the hot pressing method. The fractured microstructure features and mechanical properties of the GO/UHMWPE composites were investigated by Scanning electron microscope (SEM) and universal testing machine, respective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014